

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5905-5908

Tetrahedron Letters

Synthèse de nouveaux dérivés tétrahydroquinoléines et quinoléines via la réaction d'aza-Diels-Alder suivie d'aromatisation

Fouzia Fadel,^a Soumia Lafquih Titouani,^{a,*} Mohamed Soufiaoui,^a Hafida Ajamay^a and Ahmed Mazzah^b

^aLaboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique Associé au CNCPRST, Université Mohamed V, Faculté des Sciences, BP 1014, R.P. Rabat, Maroc ^bLaboratoire de Spectrochimie Infra-rouge et Raman UMR8516, Université des Sciences et Techniques de Lille, 59655 Villeneuve d'Ascq Cedex, France

> Received 17 March 2004; revised 19 May 2004; accepted 26 May 2004 Available online 19 June 2004

Abstract—The Aza-Diels–Alder reaction of aldimines with isoeugenol is described. New 1,2,3,4-tetrahydroquinoline and quinoline structures are reported. The stereo- and regioselectivities of the [4+2] cycloaddition are discussed. © 2004 Elsevier Ltd. All rights reserved.

Résumé—La réaction d'aza-Diels–Alder des dérivés d'aldimine avec l'isoeugénol est décrite. De nouvelles structures 1,2,3,4-tétrahydroquinoléiques et quinoléiques sont rapportées. La stéréo- et la régiosélectivité de la cycloaddition [4+2] sont discutées. © 2004 Elsevier Ltd. All rights reserved.

L'intérêt que représentent les tétrahydroquinoléines naturelles et synthétiques repose sur leurs propriétés pharmacologiques et sur leurs applications industrielles. Ce sont également d'excellents précurseurs dans la synthèse de nouveaux composés susceptibles de présenter des activités biologiques.^{1a-k}

Une étude bibliographique montre que la réaction d'aza-Diels-Alder,^{2a-v} en opposant les diénophiles riches en électrons à des N-arylimines en présence d'une quantité catalytique d'acide de Lewis (FeCl₃, SnCl₄, AlCl₃, BF₃. Et₂O, TiCl₄, LnCl₃, InCl₃...), est une voie d'accès aux 1,2,3,4-tétrahydroquinoléines.

Le but de notre travail est de synthétiser de nouveaux systèmes tétrahydro-1,2,3,4-quinoléiques et quinoléiques et de contribuer ainsi aux développements réactionnel et stéréochimique de la réaction d'aza-Diels-Alder. Notre choix s'est porté sur l'isoeugénol 1 comme diénophile acyclique et à site styrénique riche en électrons. Quant aux hétérodiènes, nous avons opté pour trois dérivés d'aldimines 2, 3 et 4 (Fig. 1) dont la synthèse a été effectuée selon le protocole classique^{2e} ou mieux, par application de la technique des micro-ondes.^{4f} Ces aldimines, pouvant chacun se comporter comme deux aza-diènes, évoquent le problème de la chimiosélectivité.

Afin de réaliser cette hétérocycloaddition [4+2], quatre modes opératoires ont été envisagés. Le premier consiste à placer l'isoeugénol 1 et l'aldémine 2 (3, 4), pris en quantité stoechiométrique, en solution dans l'acétonitrile anhydre et en présence d'un excès de chlorure d'aluminium. Le second mode se différencie du premier par l'ajout de 1/3 d'équivalent du complexe $Et_3N-AlCl_3$. Le troisième est réalisé selon la méthode 'one pot', c'està-dire en remplaçant l'aldimine par ses deux produits de base: l'aldéhyde et l'amine. Enfin, le quatrième diffère du précédent par l'ajout de 1/3 d'équivalent du complexe $Et_3N-AlCl_3$.

Keywords: Aza-Diels-Alder; Tétrahydroquinoline; Quinoline.

^{*} Corresponding author. Tel./fax: +212-3777-5440; e-mail: lafquih@ fsr.ac.ma

Schéma 1.

Il est important de noter, qu'en absence de l'aldimine et dans les conditions opératoires du premier milieu,^{4a} l'isoeugénol s'est avéré instable. Ce dernier se comporte à la fois comme diène et diénophile et évolue vers une tétraline substituée **5** (Schéma 1). La structure du cycloadduit est établie sur la base des données spectroscopiques⁵ et le sens de la cycloaddition [4+2] est déduit de la nature des divers couplages protoniques.

L'isoeugénol 1 a été opposé aux hétérodiènes 2, 3 et 4 dans l'acétonitrile selon chacun des quatre modes opératoires^{4a-d} précédemment décrits. Le second mode opératoire a permis d'isoler les adduits avec des rendements optimum. La présence de la triéthylamine, en favorisant la solubilisation du chlorure d'aluminium²ⁱ dans l'acétonitrile, joue un rôle essentiel. Le protocole 'one pot' en présence de triéthylamine apparaît moins favorable. L'analyse spectroscopique^{3,6-8} des nouveaux adduits permet de leurs attribuer une structure 1,2,3,4-tétrahydroquinoléique (Schéma 2).

Le caractère hautement stéréo-, régio- et chimiosélectif, proposé pour la réaction d'hétérocycloaddition [4+2], est déduit des données de la RMN¹H 1D et 2D (Cosy et HMBC). En effet, la nature du couplage des protons $H_2(d)$, $H_3(dqd)$ et $H_4(d)$ et la valeur numérique des constantes de couplage $J_{\text{H2-H3}} = 9.9$ et $J_{\text{H3-H4}} = 11.9$ Hz, attestant respectivement la disposition trans de H₂/H₃ et de H₃/H₄, définissent la stéréochimie d'approche de l'hétérodiène vis-à-vis du diénophile. Les aspects régioet chimiosélectif sont également confirmés par les données de RMN du ¹³C. Elles montrent plus particulièrement un signal à 63.8 ppm attribuable au carbone C₂ subissant les effets électroniques attracteurs de l'azote adjacent. L'analyse des pics croisés significatifs, dus aux corrélations ${}^{2}J_{C-H}$ et ${}^{3}J_{C-H}$ dans les spectres de RMN 2D HMBC, conforte davantage le caractère régio- et chimiosélectif de la cycloaddition (Fig. 2).

Figure 2.

L'élaboration spécifique des 1,2,3,4-tétrahydroquinoléines *trans-trans* prédit à posteriori un seul sens d'approche favorable de l'aza-2 diénique vis-à-vis du diénophile **1** (Fig. 3). L'état de transition formé, assisté

OCH₃

Figure 3.

Schéma 3.

par une dispersion de charge favorisée par la polarité du solvant acétonitrile utilisé, implique l'interaction dominante des orbitales frontières entre la 'LUMO' de l'aldimine et la 'HOMO' de l'isoeugénol; ce qui constitue une étape déterminante de la réaction de Diels-Alder à demande électronique inverse. Cet état de transition, *endo* par rapport au groupement aryle du diénophile, montre des interactions orbitalaires Π - Π secondaires favorables qui le privilégient à l'état de transition *exo*. Ce dernier devrait conduire au cycloadduit *cis-trans* qui n'a pas été détecté (Fig. 3).

Dans la deuxième partie de notre étude, les adduits ont été aromatisés par traitement avec du soufre en phase solide.^{4e} Les deux produits sont mélangés intimement puis portés à fusion. Les données spectroscopiques^{9–11} du produit résultant corroborent la structure quinoléique (Schéma 3).

En effet, les spectres RMN du ¹H et du ¹³C montrent plus particulièrement le déblindage du groupement méthyle porté par C_3 et la transformation des carbones tertiaires C_2 , C_3 et C_4 en carbones quaternaires.

En conclusion, nous avons démontré l'efficacité du complexe AlCl₃–1/3 Et₃N dans la réaction d'aza-Diels– Alder à demande électronique inverse entre l'isoeugénol et quelques dérivés d'aldimines. De nouveaux produits 1,2,3,4-tétrahydroquinoléines et quinoléines ont été préparés de manière stéréo-, régio- et chimiosélective.

References and notes

 (a) Johnson, J. V.; Rauckman, S.; Baccanan, P. D.; Roth, B. J. Med. Chem. 1989, 32, 1942–1949; (b) Carling, R. W.; Leeson, P. D.; Moselay, A. M.; Smith, J. D.; Saywell, K.; Tnckelbank, M. D.; Kemp, J. A.; Marshall, G. R.; Foster, A. C.; Grimwocd, S. Bioorg. Med. Chem. Lett. 1993, 3, 65–70; (c) Feng, J.; Lipton, J. M. Neuropharmacology 1987, 26, 1775, Chem. Abstr. 1988, 108, 49222; (d) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031–15070, et références citées; (e) Di Fabio, R.; Alvaro, G.; Bertani, B.; Donati, D.; Giacobbe, S.; Marchioro, C.; Palma, C.; Lynn, S. M. J. Org. Chem. 2002, 67, 7319–7328; (f) Thomson, D. P. Mycologia 1989, 81, 115, Chem. Abstr. 1989, 1310, 228453; (g) Steinhagen, H.; Corey, E. J. Org. Lett. 1999, 1, 823–824; (h) Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189–2191; (i) Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org. Chem. 2003, 68, 442–451;
(j) Snider, B. B.; Ahn, Y.; O'Hare, S. M. Org. Lett. 2001, 3, 4217–4220;
(k) Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913–2916.

- 2. (a) Weinreb, S. M. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; pp 401-449; (b) Boger, D. L. Tetrahedron 1983, 39, 2865-2939; (c) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic: New York, 1987, 71; (d) Boger, D. L. In Comprehensive Organic Synthesis; Pergamon: Oxford, 1990; Vol. 5, Chapter 4.3; Tietze, L. F.; Kettschau, G. In Topics in Current Chemistry; Springer: Berlin, 1997; Vol. 189; (e) Behforouz, M.; Ahmadian, M. Tetrahedron 2000, 56, 5259-5288; (f) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099-6138; (g) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379-471; (h) Reo, A.; Montgomory, A. J. J. Am. Chem. Soc. 1953, 75, 910-912; (i) Cabral, J.; Laszlo, P.; Montaufier, M. T. Tetrahedron Lett. 1988, 29, 547-550; (j) Cabral, J.; Laszlo, P. Tetrahedron Lett. 1989, 30, 7237–7238; (k) Linkerk, F.; Laschat, S.; Knickmeier, M. Liebigs Ann. 1995, 985-993; (1) Loh, T.-P.; Kevin, S. V.; Koh, K. S.-V.; Sim, K.-Y.; Leong, W.-K. Tetrahedron Lett. 1999, 40, 8447-8451; (m) Linkerk, F.; Laschat, S.; Kotila, S.; Thomas, F. Tetrahedron 1996, 52, 955–970; (n) Ishitani, H.; Kobayachi, S. Tetrahedron Lett. 1996, 37, 7357-7360; (o) Babu, G.; Perumal, P. T. Tetrahedron 1998, 54, 1615-1626; (p) Baudelle, R.; Melnyk, P.; Déprez, B.; Tartar, A. Tetrahedron 1998, 54, 4125-4140; (q) Spanedda, M. V.; Hoang, V. D.; Crousse, B.; Bonnet-Delpon, D.; Begue, J.-P. Tetrahedron Lett. 2003, 44, 217-219; (r) Zang, J.; Li, C.-J. J. Org. Chem. 2002, 67, 3969-3971; (s) Cheng, D.; Zhou, J.; Saiah, E.; Beaton, G. Org. Lett. 2002, 4, 4411–4414; (t) Sundararajan, G.; Prabagaran, N.; Varghese, B. Org. Lett. 2001, 3, 1973-1976; (u) Spaller, M. R.; Thielemann, W. T.; Brennan, P. E.; Bartlett, P. A. J. Comb. Chem. 2002, 4, 516-522; (v) Lavilla, R.; Bernabeu, M. C.; Carranco, I.; Diaz, J. L. Org. Lett. 2003, 5, 717-720.
- 3. Les points de fusion ont été pris au moyen d'un appareil Buchi 510. Les spectres RMN¹H et ¹³C ont été enregistrés avec des appareils Bruker respectivement (300 MHz pour le proton et 75 Hz pour le carbone 13). Les spectres ont été enregistrés dans CDCl₃ avec le TMS comme référence interne. Les déplacements chimiques sont donnés en ppm. Les chromatographies sur couche mince ont été réalisées avec des plaques d'oxyde d'alumine: réf. 5554, prêtes à l'emploi, avec indicateur de fluorescence. L'éluant utilisé est un mélange de cyclohexane et d'acétate d'éthyle (8/2). La préparation des hétérodiènes a été réalisée selon le protocole classique^{1e} (48 h, Rdt = 94%) et le mode microondes4f Rdt = 90%), l'isoeugénol (2 mn étant commercial.

- 4. (a) Àune solution de 3×10^{-3} moles de l'hétérodiène dissous dans 30 mL d'acétonitrile, sont ajoutées 10⁻² moles de chlorure d'aluminium anhydre. Le mélange réactionnel est agité pendant 5 min puis additionné de 3×10^{-3} moles du diénophile. Le mélange réactionnel est maintenu sous agitation à température ambiante durant 48 h. Le mélange réactionnel est neutralisé par une solution de carbonate de sodium, la phase organique est concentrée au rotavapor. Le résidu obtenu est recristallisé dans l'éthanol; (b) Ce mode diffère de (a) par l'ajout de 10^{-2} moles de chlorure d'aluminium anhydre avec 3×10^{-3} moles de triéthyle amine; (c) A une solution de 3×10^{-3} moles d'amine aromatique et 3×10^{-3} moles d'aldéhyde aromatique dans 30 mL d'acétonitrile, sont ajoutées 10⁻² moles de chlorure d'aluminium anhydre. Après 1 h 30 min d'agitation, 3×10^{-3} moles du diénophile sont ajoutées et le mélange réactionnel est maintenu sous agitation à température ambiante durant 48 h. Le traitement de la réaction est identique à celui décrit précédemment; (d) Ce mode diffère de (c) par l'ajout de 10^{-2} moles de chlorure d'aluminium anhydre avec 3×10^{-3} moles de triéthyle amine; (e) Le mélange homogène de 2×10^{-4} moles du cycloadduit 5 et 5×10^{-4} moles de soufre, est porté à fusion durant 5 min après refroidissement, le résidu est extrait avec $2 \times 5 \,\text{mL}$ de dichlorométhane. Les phases organiques sont concentrées à sec. Le solide obtenu est recristallisé dans l'éthanol; (f) un mélange intime de 7×10^{-3} moles d'aldéhyde, de 7×10^{-3} d'aniline et de 20 g de sulfate de magnésium, est irradié sous micro-onde à 630 w durant 2 min. Après refroidissement, le mélange est extrait deux fois avec 20 mL d'éther. Les phases organiques sont séchées sur sulfate de sodium et concentrées à sec. Le solide obtenu est recristallisé dans l'éthanol.
- 5. La tétraline **5** est obtenue après action d'AlCl₃ sur l'isoeugénol **1** (0.49 g, 3 mmol). Rdt 4a: 20%, $F^{\circ}C = 173-175 \,^{\circ}C$ (EtOH), RMN¹H (300 MHz) δ 3.78 (d, J = 9.2 Hz, 1H, H₁), 1.07 (d, J = 7.0 Hz, 3H, Me₂), 1.02 (d, J = 7.4 Hz, 3H, Me₃), 1.73 (m, 1H, H₂), 1.44 (m, 1H, H₃), 2.94 (m, 1H, H₄), 6.52–6.90 (m, 5H_{Ar}), RMN ¹³C (75 MHz) δ 57.2 (C₁), 49.7 (C₂), 48.9 (C₃), 22.8 (C₄), 14.2 (Me₂), 12.7 (Me₃), 56.6 (Me₆), 56.3 (Me_{3"}), 107.9–151.1 (C_{ar}).
- La 1,2,3,4-tétrahydroquinoléine 6 est obtenue après cycloaddition de l'hétérodiène 2 (0.67 g, 3 mmol) avec l'isoeugénol (0.49 g, 3 mmol). Rdt (AlCl₃ ou, mieux, protocole (a): 30%, (b): 70%, (c): 13%, (d): 21%, F°C = 170–172 °C (EtOH), RMN¹H (300 MHz) δ 0.58 (d, J = 6.5 Hz, 3H, Me₃), 2.10 (s, 3H, Me₆), 2.15 (dqd, J = 6.5,

9.9, 11.9 Hz, 1H, H₃), 3.70 (d, J = 11.9 Hz, 1H, H₄), 3.80 (s, 3H, OMe_{4'}), 3.85 (s, 3H, OMe_{3''}), 3.95 (s, 1H, H₁), 4.15 (d, J = 9.9 Hz, 1H, H₂), 5.50 (s, 1H, OH), 6.44–7.38 (m.10H_{Ar}), RMN ¹³C (75 MHz) δ 63.8 (C₂), 42.3 (C₃), 52.8 (C₄), 16.9 (Me₃), 20.9 (Me₆), 55.7 (Me_{4'}), 56.4 (Me_{3''}), 111.5–159.6 (C_{ar}).

- 7. La 1,2,3,4-tétrahydroquinoléine 7 est obtenue après cycloaddition de l'hétérodiène 2 (1.08 g, 3 mmol) avec l'isoeugénol (0.49 g, 3 mmol). Rdt (AlCl₃ ou, mieux, protocole (a): 15%, (b): 30%, (c): 18%, (d): 24%, F°C = 180–182 (EtOH), RMN¹H (300 MHz) δ 0.66 (d, J = 6.6 Hz, 3H, Me₃), 2.55 (dqd, J = 6.5, 10.2, 10.9 Hz, 1H, H₃), 3.71 (d, J = 10.9 Hz, 1H, H₄), 3.84 (s, 3H, OMe_{3"}), 4.41 (s, 1H, H₁), 4.23 (d, J = 10.2 Hz, 1H, H₂), 5.58 (s, 1H, OH), 6.63–7.28 (m, 11H_{Ar}), RMN ¹³C (75 MHz) δ 64.9 (C₂), 38.7 (C₃), 52.5 (C₄), 17.4 (Me₃), 56.4 (Me_{3"}), 111.3– 156.6 (C_{ar}).
- 8. La 1,2,3,4-tétrahydroquinoléine **8** est obtenue après cycloaddition de l'hétérodiène **2** (1.13 g, 3 mmol) avec l'isoeugénol (0.49 g, 3 mmol). Rdt (AlCl₃ ou, mieux, protocole (a): 20%, (b): 50%, (c): 26%, (d): 32%, $F^{\circ}C = 210-212 \,^{\circ}C$ (EtOH), RMN¹H (300 MHz) δ 0.65 (d, J = 6.4 Hz, 3H, Me₃), 2.16 (s, 3H, Me₆), 2.54 (dqd, J = 6.4, 10.2, 10.7 Hz, 1H, H₃), 3.68 (d, J = 10.7 Hz, 1H, H₄), 3.86 (s, 3H, OMe_{3"}), 4.36 (s, 1H, H₁), 4.18 (d, J = 10.2 Hz, 1H, H₂), 5.63 (s, 1H, OH), 6.53-7.28 (m, 10H_{Ar}), RMN ¹³C (75 MHz) δ 65 (C₂), 38.9 (C₃), 52.5 (C₄), 17.4 (Me₃), 21.0 (Me₆), 56.5 (Me_{3"}), 111.4–156.8 (C_{ar}).
- la quinoléine 9 est obtenue après aromatisation du cycloadduit 5 (0.12 g, 3 mmol) avec le soufre (0.96 g, 30 mmol). Rdt = 70%, F°C = 220–222 °C (EtOH), RMN¹H (300 MHz) δ 2.41 (s, 3H, Me₃), 2.17 (s, 3H, Me₆), 3.89 (s, 3H, OMe_{4'}), 3.86 (s, 3H, OMe_{3''}), 6.77–8.05 (m, 10H_{Ar}), RMN ¹³C (75 MHz) δ 63.9 (C₂), 42.35 (C₃), 52.84 (C₄), 16.97 (Me₃), 20.95 (Me₆), 55.6 (Me₄), 56.25 (OMe_{3'}), 113.68–130.39 (C_{Ar}).
- 10. la quinoléine **10** est obtenue après aromatisation du cycloadduit **6** (0.11 g, 3 mmol) avec le soufre (0.96 g, 30 mmol). Rdt = 50%, $F^{\circ}C = 120-122 \,^{\circ}C$ (EtOH), RMN¹H (300 MHz) δ 2.40 (s, 3H, Me₃), 3.91 (s, 3H, OMe_{3''}), 6.77–8.05 (m, 11H_{Ar}).
- 11. la quinoléine **11** est obtenue après aromatisation du cycloadduit **7** (0.10 g, 3 mmol) avec le soufre (0.96 g, 30 mmol). Rdt = 65%, $F^{\circ}C = 118-120 \ ^{\circ}C$ (EtOH), RMN¹H (300 MHz) δ 2.44 (s, 3H, Me₃), 2.37 (s, 3H, Me_{4'}), 3.88 (s, 3H, OMe_{3''}), 6.77-8.05 (m, 10H_{Ar}).